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Anomalously large thermopower of mesoscopic normal-metal/superconductor interferometers has been in-
vestigated by Chandrasekhar et al. It was shown that, depending on the geometry of the interferometer, the
thermopower is either symmetric or antisymmetric periodic function of the magnetic flux. We develop a
detailed theory of the observed thermoelectric phenomena in the framework of the nonequilibrium quasiclas-
sical approach. In particular, we provide a possible explanation of the symmetric thermopower oscillations.
This effect is attributed to the electron-hole symmetry violation that originates in the steady-state charge
imbalance between different arms of the interferometer. Our theory can be tested by an additional control over
the charge imbalance in a modified setup geometry. We also predict a sign reversal behavior of the ther-
mopower with increasing temperature that is consistent with the experiments by Parsons et al.
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I. INTRODUCTION

A linear response of a metal to the temperature gradient
�T and external electric field E is characterized by four
transport coefficients, �, �, �, �, which are defined, under the
open circuit conditions, by the following relation:1

�Je

JQ � = �� �

� �
�� E

− �T
� , �1�

where Je is the electric current and JQ is the heat flow in-
duced in the circuit. The diagonal terms, � and �, are the
electric and thermal conductivities, while the off-diagonal
ones, � and �, are the thermoelectric coefficients that fulfill
the Onsager relation �=T�.

The thermoelectric response is usually observed in a con-
fined geometry by measuring the voltage rather than the elec-
tric current. The ratio of the measured voltage to the tem-
perature gradient applied across the sample is known as the
Seebeck coefficient �or the thermopower� and is given by S
=� /�= �E /�T� �Je=0. Mott’s formula2 relates the ther-
mopower to the energy dependent conductivity ����,

S = −
�2

3

kB
2T

e
�d ln ����

d�
�

�=�F

, �2�

and illustrates an important role of the electron-hole asym-
metry for the thermoelectric response in metals. Indeed, one
can see from Eq. �2� that S vanishes if ���� is symmetric
around the Fermi energy �F. In the case of a spherical Fermi
surface the thermopower S�kB

2T /e�F is finite only because
of a tiny difference in the effective masses of electrons and
holes.

In superconductors the situation is complicated by the
presence of Bose condensate of Cooper pairs that does not
respond to a temperature gradient. It was suggested by
Ginzburg3 on the basis of the two-fluid model of supercon-
ductivity that the linear response theory �Eq. �1�	 still applies
to a normal �dissipative� component of the electron liquid.
The thermoelectric effect is, however, shunted by the super-
conducting component and cannot be observed in bulk
superconductors.4,5 An incomplete cancellation of the ther-

moelectric and supercurrents was, nevertheless, predicted for
anisotropic superconductors and superconducting bimetallic
samples.6,7 This theory has been experimentally confirmed
by Zavaritskii8 by using a bimetallic loop to detect the ther-
mopower in a superconducting state. The method relies on
the quantization of the superconducting condensate in the
loop that prevents a complete cancellation of the thermoelec-
tric current and generates a small, but measurable, magnetic
flux 	T�10−2	0, where 	0=2e /h is the flux quantum. In
subsequent experiments,9 however, much greater values of
the thermoelectrically induced flux, 	T�102	0, were de-
tected. The origin of this “giant flux” puzzle remains
debated.10,11

Mesoscopic systems provide an altogether different way
to probe the thermoelectric phenomena in the presence of
superconductivity. The superconducting correlations can
penetrate the normal-metal part of the system due to a pro-
cess known as Andreev reflection. As the result, the ther-
mopower of a mesoscopic normal-metal wire can be affected
by contacting the wire to a superconductor. First experiments
of this kind have been performed a decade ago by Eom et
al.12 �see Fig. 1�. In these and in numerous subsequent
experiments13–21 the thermopower of a normal-metal wire in
proximity to a superconductor/normal-metal loop was found
to oscillate as a function of the magnetic flux piercing the
loop. The amplitude of the oscillations was shown to exceed
the thermopower of the normal-metal wire in the absence of
proximity-induced superconductivity. The experimental re-
sults suggest that the proximity effect is responsible for the
electron-hole symmetry violation in these systems, which is
no longer suppressed by a small factor kBT /�F. The lack of
the electron-hole symmetry in the experiments was attributed
long ago22,23 to a voltage induced between the superconduct-
ing and the normal-metal part of the mesoscopic circuit un-
der nonequilibrium conditions. This voltage is directly re-
lated to the shift between the chemical potential in the
normal metal and that in the superconductor. Similar shift,
which is commonly referred to as the charge imbalance, can
exist inside a bulk superconductor between the chemical po-
tential of quasiparticles and that of the Cooper pairs.

The charge imbalance in bulk superconductors and its role
in the thermoelectric effects were intensely studied in the
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1970s �see Ref. 24 for the review�. The imbalance can be
achieved either by injection of a dissipative current to the
superconductor25–28 or by applying a temperature gradient in
the presence of a superconducting flow29–31 �Pethick-Smith
effect�. The relaxation of the charge imbalance is determined
primarily by the electron-phonon interaction. From the de-
tailed theory provided by Schmid and Schön32,33 one can
roughly estimate the imbalance relaxation time in bulk
s-wave superconductors as 
Q��kBT /��
in, where � is the
value of the superconducting order parameter and 
in is the
temperature dependent electron-phonon scattering time. In
our study we deal instead with the voltage drop between the
superconducting and the normal-metal arms of the interfer-
ometer. We, however, keep using the term imbalance to
stress the analogy to the thermoelectric effects in bulk super-
conductors.

The nonequilibrium quasiclassical theory of proximity ef-
fect has been successfully applied in Refs. 34–37 to describe
the antisymmetric magnetic field dependence of the ther-
mopower in Fig. 1�a�. In this paper we develop a general
analytical approach that explains both antisymmetric and
symmetric dependences of the thermopower observed in the
experiment. Our theory is based on the quasiclassical kinetic
equations in the limit of weak proximity effect. Even though
this approximation assumes a small transparency of the
normal-metal/superconductor interfaces in Fig. 2, it does not
affect the symmetry of the obtained results.

In Sec. IV we solve the kinetic equations for the paral-
lelogram interferometer depicted schematically in Fig. 3. In
accordance with earlier studies we find that the charging of
the superconducting arm of the interferometer is determined
by the interplay of the supercurrent and the temperature gra-
dient. The formation of the charge imbalance is analogous to

that in the Pethick-Smith effect.29 The extra charge accumu-
lated by the superconductor is, therefore, a purely antisym-
metric function of both the temperature gradient and the ap-
plied magnetic flux. In this case the left-right symmetry of
the structure has to be broken in order to observe the effect
of proximity-induced correlations on the thermopower of the
normal-metal wire.34 The symmetry breaking can be caused
either by a difference between L1 and L2 in Fig. 3 assuming
that these distances are much smaller than the phase-
coherence length L� or by a difference in the NS interface
transparencies 1 and 2, which are given by the ratio of the
normal wire resistance per unit length to the interface resis-
tance. In the latter case the phase coherence of quasiparticles
in the normal-metal wire is irrelevant for the symmetry
breaking. We also stress that the energy relaxation processes
in the superconductor play an important role in the theory of
the thermoelectric effect. Indeed, the time-independent solu-
tion to the kinetic problem exists only if the detailed balance
condition at a given energy is broken. In other words, in the
steady-state limit, only the total charge transmitted through
the superconducting wire is conserved while the energy den-
sity of the charge flow is not. The steady-state regime devel-
ops at times exceeding the imbalance relaxation time 
Q in-
side the superconducting wire. The resulting behavior of the
thermopower in the parallelogram interferometer is illus-
trated in Fig. 4 as a function of temperature.

In Sec. V we apply the same approach to the house inter-
ferometer, which is shown schematically in Fig. 5. In sharp

(b)

(a)

FIG. 1. The experimentally observed thermopower oscillations
�solid line� in the �a� parallelogram and in the �b� house interferom-
eter. The figure is adopted from Ref. 12.

FIG. 2. The three-terminal junction formed by a contact at-
tached to the main normal-metal wire N. The generalized rigid
boundary conditions at the junction are given by Eqs. �27� and �28�
in the matrix notation. Green’s function ǧ is continuous along the
wire N but there is a jump in Green’s function across the tunnel
barrier so that ǧ� ǧ at the junction. The kinetic component of Eq.
�28� is equivalent to Eqs. �30� and �31�.

FIG. 3. The parallelogram interferometer. Diffusive normal-
metal wire N of the length L=L1+L2 connects the temperature res-
ervoirs denoted as T1 and T2. The superconducting wire �dark line�
is contacting N at two junctions separated by a distance d. The NS
interfaces are characterized by the transparency parameters 1 and
2. Only antisymmetric dependence of the thermopower on the
magnetic flux is allowed by symmetry. The effect requires �1��2

or 1�2.
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contrast to the previous case we find a finite contribution to
the thermopower in the absence of a charge imbalance be-
tween the normal-metal and the superconducting branches.
Such contribution has an antisymmetric dependence on the
magnetic flux and requires a left-right asymmetry of the wire
N� that must originate in a difference between d1 and d2
rather than in a difference between the NS interface transpar-
encies ̃1 and ̃2. This asymmetric dependence of the ther-
mopower in the house interferometer is a phase-coherent
phenomenon that can be attributed to the interference of qua-
siparticle trajectories shown in Fig. 6. Apart from the evident
requirement d1 ,d2�L� this effect is strongly sensitive to the
position of the Andreev reflection.38 In the parallelogram in-
terferometer the interference contribution to the ther-
mopower is averaged to zero since it involves the summation
over the trajectories of different lengths.

The odd oscillations of the thermopower are, however, not
seen in experiments with the house interferometer. Instead, a
sign-definite thermopower, which has an even dependence
on the magnetic flux 	, has been observed.12,16,21 Moreover,

the maximal values of the symmetric thermopower in Fig.
1�b� correspond to 	=n	0, where n is an integer number
and 	0=h /2e is the flux quantum. We demonstrate that this
behavior is a signature of the finite charge imbalance main-
tained between the Cooper-pair chemical potential in the su-
perconductor and the quasiparticle chemical potential in the
normal metal. Our theory predicts that the thermopower in
this case is proportional to ��1+cos 2�	 /	0�, hence its
magnetic field dependence agrees with the experimental
data12 in Fig. 1�b�. The thermopower determined by this ef-
fect has a peculiar sign-reversal behavior with increasing
temperature that is illustrated in Fig. 7. This temperature de-
pendence is in qualitative agreement with the experiments by
Parsons et al.16

In our opinion the experiments in Refs. 12, 16, and 21
provide a clear signature of a finite steady-state imbalance �
in the house interferometer. We demonstrate that a tiny
chemical potential imbalance between different branches of
the house interferometer has a great impact on the ther-
mopower due to the proximity effect. The possible origin of
the tiny imbalance is in the usual thermoelectric effect
caused by a heat dissipation in the second normal-metal wire
N�. The validity of this scenario can be tested by varying the
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FIG. 4. �Color online� The function Y�T /Ec ,d /L ,� /2� from Eq.
�61� vs the ratio T /Ec for the parallelogram interferometer with the
symmetric arms �1=�2. The thermopower is maximal for T�2Ec,
where Ec=D /L2 is the Thouless energy associated with the normal-
metal wire N. At high temperatures the thermopower decays accord-
ing to the stretched exponential law �Eq. �60�	 that is determined by
the Thouless energy Ec�=D /d2 associated with the distance between
the NS junctions.

FIG. 5. The house interferometer. The wires N and N� are
normal-metal wires. The dark wire is superconducting. The trans-
parency parameters  and ̃1,2 are defined by the ratio between the
transmission probability per channel and the effective barrier
length. Both symmetric and antisymmetric dependences of the ther-
mopower on the magnetic flux 	 is possible in this setup. The
antisymmetric effect, however, requires d1�d2. A charge imbalance
between the superconducting wire and the temperature reservoirs is
necessary for the symmetric thermopower.

FIG. 6. An example of interfering trajectories that contribute to
the thermoelectric response of the house interferometer.
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FIG. 7. The function Ỹ�T /Ec� from Eqs. �87� and �88� vs the
ratio T /Ec for the house interferometer with d1=d2. The function is
maximal for T
4Ec and changes sign at T
24Ec, where Ec

=D /L2 is the Thouless energy associated with the normal-metal
wire N. The inset shows the temperature dependence of the ther-
mopower in Eq. �87� under the assumption that the imbalance �
and the length L are temperature independent. The thermopower is
maximal at T
Ec and decays as T−2 for T�24Ec.
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chemical potential in N� with the help of an additional elec-
trode or by a detailed measurement of the temperature de-
pendence of the thermopower in the house interferometer.

The remainder of the paper is organized as follows. In
Sec. II we introduce the well-known quasiclassical approach
to the proximity effects in diffusive mesoscopic wires. In
Sec. III the rigid boundary conditions at a three-terminal
contact are given. Sections IV and V are devoted to the ana-
lytical calculation of the thermopower for the parallelogram
and the house interferometer, correspondingly. We summa-
rize our conclusions in Sec. VI.

II. QUASICLASSICAL THEORY

Andreev reflection is the main microscopic mechanism of
charge transport between the superconductor �S� and the
normal-metal �N� at low temperatures. It can be seen from
the normal-metal side as the conversion of electronlike exci-
tations of the energy � to the holelike ones. The reflection
takes place at the NS boundary and is responsible for the
phase coherence of electrons and holes at a distance �D /� in
the diffusive normal metal, where D is the diffusion coeffi-
cient �we set �=kB=1 throughout the rest of the paper�.
From the superconductor side the same process can be
viewed as a diffusion of Cooper pairs that brings the super-
conducting correlations into the normal metal.

The characteristic scale of the proximity effect at a tem-
perature T is determined by the coherence length �=�D /T.
The electron-hole coherence can be detected in the diffusive
metal provided T�Ec, where Ec=D /L2 is the Thouless en-
ergy associated with the distance L to the NS interface. On
the ballistic scales, Ec��, the role of Ec is played by �, the
absolute value of the superconductor energy gap.

The conditions for the diffusive proximity effect were ful-
filled in the pioneering experiments with Andreev interfer-
ometers performed by Eom et al.12 and Parsons et al.16 We,
therefore, reduce our consideration to the diffusive approxi-
mation of the quasiclassical theory that is described by the
Usadel equation.

We shall start from the stationary Usadel equation written
for the quasiclassical Green’s function ǧ�x ,�� in a diffusive
normal-metal wire,

D
dǏ

dx
+ �i��z, ǧ	 = 0, Ǐ � ǧ

dǧ

dx
, �3�

where D is the diffusion coefficient, Ǐ is the matrix current,
and x� �−L1 ,L2� is the coordinate along the normal-metal
wire. Green’s function is represented by a matrix in the
Keldysh space,

ǧ = �ĝR ĝK

0 ĝA �, ǧ2 = 1, �4�

which yields the quasiclassical constraint ǧ2=1.
Despite the absence of the superconducting order param-

eter in the metallic wire, the proximity effect will lead to
superconducting correlations that are described by the
anomalous components fR,A of Green’s function. These cor-

relations are taken into account by the extension to the
electron-hole space. The spectral �retarded and advanced�
sector of Green’s function in this space is parametrized as

ĝR�A� = ��gR�A� fR�A�

f̄R�A� �gR�A� � , �5�

where bar stands for the charge conjugation. The relation

gR�A� = �1 − fR�A� f̄R�A� �6�

follows from the quasiclassical constraint �Eq. �4�	. The
Keldysh component of the constraint, ĝRĝK+ ĝKĝA=0, sug-
gests that ĝK has only two linearly independent entities. In
what follows we use the standard parametrization,

ĝK = ĝRĥ − ĥĝA, �7�

where the diagonal matrix

ĥ = h + �zh� �8�

has 2 degrees of freedom: h and h�.
We model the experimental situation by an idealized sys-

tem consisting of two equilibrium reservoirs connected by a
noninteracting normal-metal diffusive wire N. The distribu-

tion functions ĥ1 and ĥ2 in the reservoirs are parametrized by
the chemical potentials �1 and �2 and the temperatures T1
and T2 as

ĥ�x→−L1,L2
= �h1,2 0

0 h̄1,2
� , �9�

where

ha = tanh
� − �a

2Ta
, h̄a = tanh

� + �a

2Ta
, �10�

and a=1,2. The functions �1−ha� /2 and �1− h̄a� /2 are the
Fermi distribution functions of electrons and holes, corre-
spondingly. The electric and the heat currents in the normal-
metal wire are obtained in the Usadel approximation from

the Keldysh component of the matrix current Ǐ,

Je =
eD�

4
 d�je���, je��� = Tr �zÎ

K, �11a�

JQ =
D�

4
 d��jQ���, jQ��� = Tr ÎK, �11b�

where ÎK= ĝR�dĝK /dx�+ ĝK�dĝA /dx�.
The Usadel equation �Eq. �3�	 does not take into account

inelastic processes, hence the charge and heat flow are con-
served for each energy. Indeed, from the diagonal compo-
nents of its Keldysh sector we obtain the conservation laws,

dje���
dx

=
djQ���

dx
= 0, �12�

which play a role of the kinetic equation in the normal-metal
wire. The diagonal components of the retarded and advanced
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component of the Usadel equation �Eq. �3�	 imply the con-
servation of the “spectral” current,

dWR

dx
=

dWA

dx
= 0, �13�

where WR= fR�df̄R /dx�− f̄R�dfR /dx�. This condition is
equivalent to the conservation of the supercurrent, which can
flow in the normal metal in the presence of the proximity
effect.

From Eq. �11� we find the current energy densities je���,
jQ��� in the parametrization of Eqs. �5� and �7� as

je��� = M+
dh�

dx
− U

dh

dx
+ Wh , �14a�

jQ��� = M−
dh

dx
+ U

dh�

dx
+ Wh�, �14b�

where the following functions, which depend on the energy
and coordinate, are introduced:

M� = �2�1 + gRgA� � �fR f̄A + fA f̄R�	 , �15a�

U = fR f̄A − fA f̄R, W = WR − WA. �15b�

Thus, the kinetic part of the transport problem is fully de-
scribed by Eqs. �12� and �14�.

It is instructive to apply this formalism to the transport in
a metallic wire in the absence of a proximity effect. In this
case one finds fR�A�=0, hence gR=−gA=�z and

je = 4
dh�

dx
, jQ = 4

dh

dx
. �16�

The solution to Eq. �12�, which yields the boundary condi-
tions �Eq. �9�	, reads

h��,x� =
1

4
�h0 +

L2 − L1 − 2x

L
hT� , �17a�

h���,x� =
1

4
�h� +

L2 − L1 − 2x

L
h�T� , �17b�

where the following notations are used:

h0 = h1 + h̄1 + h2 + h̄2, �18a�

hT = h1 + h̄1 − h2 − h̄2, �18b�

h� = h1 − h̄1 + h2 − h̄2, �18c�

h�T = h1 − h̄1 − h2 + h̄2. �18d�

Substituting Eq. �17� to Eq. �16� we obtain je=−�2 /L�h�T
and jQ=−�2 /L�hT.

If a temperature gradient is applied between the reservoirs
that are kept at the same chemical potential �=�1=�2, the
integration in Eq. �11a� gives Je=0, hence �=0. The heat
current in the limit �T1−T2��T is given by Eq. �11b� as

JQ = − ��T2 − T1�, � =
�2

3

2D�T

L
, �19�

where T= �T1+T2� /2 is the mean temperature in the system
and � is the thermal conductivity.

Similarly, if the chemical potential difference is applied
between the reservoirs that are kept at the same temperature
T, the integration in Eq. �11� gives jQ=0 and

Je = �
�2 − �1

�− e�L
, � = 2e2D� , �20�

where � is the Drude result for the electric conductivity.
We shall stress that the vanishing of the thermoelectric

coefficients � and � in the calculation above is a conse-
quence of the linearization of the quasiparticle spectrum near
the Fermi energy �F. Such a linearization is essential for the
quasiclassical approximation and leads to the exact electron-
hole symmetry in metals. The proximity effect can, however,
break this symmetry through the possible energy dependence
of M�, U, and W in Eq. �14� that can give rise to a finite
thermoelectric response in the system. Such thermoelectric
phenomena can be analyzed within the quasiclassical ap-
proximation.

Since the superconducting arm of the interferometer used
in experiments exceeds the electron-phonon scattering length
it can be described by the equilibrium quasiclassical Green’s
function ǧS. We assume for simplicity that the superconduct-
ing energy gap drops abruptly to zero in the normal-metal/
superconductor interface. Even though this assumption is not
self-consistent and disregards a small suppression of � near
the NS boundary, it does not affect our conclusions on the
symmetry of the thermopower oscillations.

We, therefore, describe the superconductor by the stan-
dard bulk expressions for the spectral components of ǧS that
are given by

ĝS
R�A� =

1
��0 � i��2 + �2� − i� �ei�

�e−i� i�
� , �21�

where � exp�i�� is the superconducting order parameter. The
external magnetic flux 	 piercing the loop leads to a gradient
of the phase �, hence the phase acquires different values �1
and �2 at the opposite ends of the superconducting wire. The
order parameter phase difference,

� = �1 − �2, �22�

is related to the magnetic flux as �=2�	 /	0. The Keldysh
component of ǧS is parametrized by

ĝS
K = �ĝS

R − ĝS
A�hS, �23�

where ĥS=tanh�� /2TS� is the quasiparticle distribution func-
tion and TS is the temperature of the superconductor. Here
we choose the chemical potential of the Cooper pairs as zero
and set hS�=0. For ��� one finds from Eq. �21� that ĝS

R

= ĝS
A, hence ĝS

K=0. In this paper we are concerned with ul-
tralow temperatures T�� and, therefore, disregard all qua-
siparticle effects in the superconductor.

The effective energy scale for the proximity effect in the
normal metal is given by the Thouless energy Ec=D /L2,
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where L is the distance from the NS interface. To describe
the experimentally relevant situation T�Ec��, we restrict
our consideration to the excitation energies that are much
smaller than the absolute value of the superconducting gap;
therefore

ĝS
R = ĝS

A = � 0 ei�

e−i� 0
� . �24�

We will see below that our results for the thermopower are
indeed defined by small excitation energies ��Ec, which
proves the consistency of this approximation.

In addition we assume that the proximity effect is weak
due to a low transparency of the NS interfaces. This assump-
tion allows for the linearization of the Usadel equation �Eq.
�3�	 with respect to the anomalous component of Green’s
function,

d2fR

dx2 = z2fR, z2 �
2�0 − i��

D
, �25�

where we replace � by �− i0 in order to stress the analytical
properties of fR. The solution for advanced Green’s function
is obtained by the substitution �→−�. The conservation of
the supercurrent in Eq. �13� is equivalent in this approxima-
tion to the standard property of the Wronskian of a linear
second-order differential equation. The following symmetry
relations simplify the subsequent analysis

fA��� = fR�− ��, f̄R�	� = fR�− 	�, f̄A = �fR��. �26�

III. BOUNDARY CONDITIONS

The boundary condition for a junction shown in Fig. 2 is
an important ingredient of our description of the proximity
effect in Andreev interferometers. We assume that a contact
wire, which is either a superconductor in the parallelogram
interferometer or a normal-metal wire N� in the house inter-
ferometer, is described by Green’s function ǧc. Green’s func-
tion in the main wire N is denoted by ǧ.

The transparency of the barrier between the contact and
the normal-metal wire is parametrized by a coefficient 
=TB /�B. It has a dimension of an inverse length, where TB is
the barrier transmission probability per channel and �B is an
effective barrier length, which is of the order of the mean
free path in N. The coefficient  can also be regarded as the
ratio of the normal-wire resistance per unit length to the in-
terface resistance and has a dimension of an inverse length.

The generalized “rigid” boundary conditions39 apply pro-
vided TB�1 for each transmission channel at the junction.
We stress that the tunnel barrier in Fig. 2 is placed between
the normal-metal wire N and the contact wire. As the result,
Green’s function ǧ is continuous along the normal-metal
wire while its derivative has a discontinuity that is deter-
mined by a difference between ǧ and ǧc. The continuity of
Green’s function in the N wire is formally written as

��ǧ	x0
� lim

�→0
�ǧ�x0 + �� − ǧ�x0 − ��	 = 0. �27�

The discontinuity of the derivative of ǧ�x� is obtained from
the matrix current conservation in the three-terminal junc-
tion,

��Ǐ	x0
= �

2
�ǧc, ǧ	�

x0

. �28�

Note, that Green’s function is discontinuous across the tunnel
barrier, i.e., ǧ� ǧc at x=x0. One can easily demonstrate that
Eq. �28� is a discrete analog of the Usadel equation �Eq. �3�	
and yields the same set of conservation laws.

For instance, the spectral part of Eqs. �27� and �28� leads
to

��W	x0
= W̃ = W̃R − W̃A, �29a�

W̃R = − �fR f̄c
R − fc

Rf̄R� , �29b�

which illustrates the conservation of the supercurrent at the
junction. In a full analogy with Eqs. �12� and �14� the
Keldysh sector of Eqs. �27� and �28� is given by

��je���	x0
=



2
Tr �z�ǧc, ǧ	x0

K

= �h� − hc��M̃+ − �h − hc�Ũ +
h + hc

2
W̃ ,

�30�

��jQ���	x0
=



2
Tr�ǧc, ǧ	x0

K

= �h − hc�M̃− + �h� − hc��Ũ +
h� + h�c

2
W̃ ,

�31�

where the following notations are introduced:

M̃� = �gR + gA��gc
R + gc

A� +
1

2
�fR + fA�� f̄ c

R + f̄ c
A�

+
1

2
� f̄R + f̄A��fc

R + fc
A� , �32�

Ũ =
1

2
�fR f̄c

A − f̄Rfc
A − fA f̄c

R + f̄Afc
R� , �33�

W̃ = − �fR f̄c
R − f̄Rfc

R − fA f̄c
A + f̄Afc

A� . �34�

Equations. �30� and �31� relate the discontinuity in the cur-
rent in the normal-metal wire N to the current flowing into
the contact wire.

IV. THERMOPOWER IN THE PARALLELOGRAM
INTERFEROMETER

The parallelogram interferometer realized in the experi-
ment of Ref. 12 is depicted schematically in Fig. 3. The
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thermopower is measured between the temperature reservoirs
T1 and T2 that are connected by the normal-metal wire N
�Au� of the length L=L1+L2�1.7 �m. The wire is con-
tacted to a long superconducting arm at the points x=−d1 and
x=d2 with a distance d=d1+d2�0.2 �m between them. The
thermopower measurement in Fig. 1�a� is performed at the
temperature T=350 mK. The superconducting coherence
length at this temperature is estimated as �=�D /T
�0.54 �m, while the phase-coherence length is approxi-
mately given by L��3.5 �m. Thus, the experimental pa-
rameters are such that d��. Therefore, if an external mag-
netic flux 	 is piercing the interferometer, the supercurrent
Js flows in the normal-metal wire between the NS junctions.

In the subsequent analysis we let �1=�2=� and calculate
the quasiparticle current J0 between the reservoirs to the first
order in the temperature difference T1−T2, thus, obtaining
the coefficient �. The thermopower is, then, calculated from
the relation S=� /�. In the limit of weak proximity effect the
Drude result for � can be used. We note that a similar ap-
proach has been developed in the series of publications by
Virtanen and Heikkilä.34–36

In order to keep our formulas compact we define the dis-
tances �1 and �2 between the NS interfaces and the corre-
sponding reservoirs as �a�La−da, where a=1,2. The im-
portant simplification, which enables us to solve the problem
analytically, is the linearization of the Usadel equation �Eq.
�25�	 for the spectral components of Green’s function ǧ�x�.
This approximation is justified since the wire is in a good
contact to the reservoirs with a vanishing proximity effect,

�fR�A��x=−L1
= �fR�A��x=L2

= 0. �35�

We remind the reader that the chemical potential � in the
reservoirs is measured with respect to that of the Cooper
pairs in the superconductor, therefore, the temperature equi-
librium is characterized by �=0.

We start by pointing out that the energy relaxation pro-
cesses are important for the existence of a steady-state re-
gime with a finite � in the parallelogram interferometer. In-
deed, if scattering is purely elastic the charge conservation
law in the superconductor must hold for each energy. In this
case the time-independent solution to the kinetic equation
does not exist. Following other works22,34 we relax the
energy-resolved condition to the conservation of a total
charge in the superconductor that is given by

 d����je	d2
+ ��je	−d1

� = 0 �36�

in the notations of Eq. �27�. The charge conservation condi-
tion in this form can be regarded as the equation on the
imbalance �. A finite supercurrent Js in the loop leads to a
nonzero imbalance, which may act as a source of an
electron-hole symmetry violation in the system. In the anal-
ogy with the Pethick-Smith effect,29 the imbalance defined
by Eq. �36� is proportional to the scalar product of the tem-
perature gradient and the supercurrent. We will see below
that �=A�T1−T2�sin 2�	 /	0, where A is a dimensionless
coefficient that is mainly determined by the ratio of the

Thouless energy Ec=D /L2 to the mean temperature T= �T1
+T2� /2, such that A is maximal for T�Ec.

From Eq. �36� we express the current in the superconduct-
ing wire as

Js =
�

16e
 d����je	d2

− ��je	−d1
� , �37�

where � is the Drude conductivity given by Eq. �20�. Fur-
thermore, the spatial integration of the electric current along
the normal-metal wire gives

J0 =
d

L
Js

e +
1

L


−L1

L2

dx
�

8e
 d�je. �38�

Thus, the boundary condition �Eq. �30�	 at the NS interfaces
together with Eqs. �11a�, �11b�, and �36�–�38� describe the
kinetic part of the problem.

Let us now perform the calculation of J0 to the second
order in the parameters 1,2. In this approximation the
anomalous components of Green’s function, fR�A�, are found
from the linearized Usadel equation �Eq. �25�	 with the help
of the boundary conditions �Eq. �35�	 and

��dfR

dx
�

−d1

= − 1ei�1, ��dfR

dx
�

d2

= − 2ei�2, �39�

where the coefficients 1 and 2 introduced in Sec. III are
determined by the NS interface transparency. The conditions
�Eq. �39�	 follow directly from the retarded component of
Eq. �28�. With the help of the following notations,

Fa = a
2sinh z�a sinh z�L − �a�

zL sinh zL
, �40a�

F12 = 12
sinh z�1 sinh z�2

zL sinh zL
, �40b�

we express anomalous Green’s function near the NS inter-
faces as

1

L
fR�− d1� = ei�1F1 + ei�2F12, �41a�

2

L
fR�d2� = ei�2F2 + ei�1F12, �41b�

and we find the supercurrent density in the normal-metal
wire as

W = �W0, x � �− d1,d2�
0, x � �− d1,d2� ,

� �42�

where W0=−4L sin � Im F12. From Eq. �14a� we obtain

��je	−d1
= h�− d1�W0 + 4��dh�

dx
�

−d1

, �43a�

��je	d2
= − h�d2�W0 + 4��dh�

dx
�

d2

�43b�

to the second order in 1,2.
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The charge conservation condition �Eq. �36�	, which de-
termines the voltage difference � /e between the supercon-
ductor and the normal-metal wire, can be written as

d

L
 d�hTW0 = − 8 d����dh�

dx �
d2

+ ��dh�

dx �
−d1

� .

�44�

The left-hand side of this expression is proportional to the
temperature gradient due to the distribution function hT. It is
also antisymmetric with respect to the order parameter phase
difference �=�1−�2=2�	 /	0 due to W0. The right-hand
side of Eq. �44� is proportional to the imbalance �. We,
therefore, come to the conclusion that the steady-state imbal-
ance is an odd function of the temperature gradient and the
applied flux.

From Eq. �37� we readily find the supercurrent

Js =
�

8e
 d��−

1

4�h0 +
�2 − �1

L
hT�W0

+ 2���dh�

dx �
d2

− ��dh�

dx �
−d1

�� . �45�

We also simplify Eq. �38� by calculating the spatial integral
from the first term in the right-hand side of Eq. �14a� to the
leading order in ,

1

L


−L1

L2

hWdx =
d

4L
�h0 +

�2 − �1

L
hT�W0. �46�

Thus, we obtain

J0 =
�

8e
 d�� 2d

L ���dh�

dx �
d2

− ��dh�

dx �
−d1

�
+

hT

2L

1

L


−L1

L2

dxU −
h�T

2L

1

L


−L1

L2

dxM+� , �47�

where the spatial derivatives of h and h� are found from Eq.
�17�.

The functions h� and h�T introduced in Eq. �18� are sym-
metric with respect to the energy � and antisymmetric with
respect to the imbalance �, while h0 and hT are antisymmet-
ric in � and symmetric in �. Moreover, the last term in Eq.
�47� can be disregarded in the linear response analysis. In-
deed, the distribution function h�T is of a second order in the
temperature gradient due to the fact that � found from Eq.
�44� is itself proportional to the temperature gradient. We
shall, therefore, omit all terms containing h�T in our analysis
of the thermopower for the parallelogram interferometer. We
note, however, that the last term in Eq. �47� is the only one
that changes sign with increasing temperature. We, therefore,
regard the sign-reversal behavior of the thermoelectric re-
sponse of the parallelogram interferometer observed by Par-
sons et al.16 as the second-order effect that is beyond the
linear response. Unlike other terms in Eq. �47� the last one is
finite for a left-right symmetric setup and can easily domi-

nate an experimental measurement for any finite temperature
gradient. We postpone the detailed discussion of this contri-
bution to Sec. V.

Omitting the terms containing h�T we find that the discon-
tinuity of the derivative dh� /dx near the NS interfaces is
determined by the boundary conditions �Eq. �30�	 as

��dh�

dx
�

−d1

=
L

4
h� Re�F1 + F12 cos �� , �48a�

��dh�

dx
�

d2

=
L

4
h� Re�F2 + F12 cos �� , �48b�

where we take advantage of the condition hS�=0.
The spatial integrals in Eq. �47� can be expressed through

anomalous Green’s functions fR,A at the NS interfaces with
the help of Eq. �25� and the integration by parts. With the
help of Eqs. �39� and �41� we obtain

�

D


−L1

L2

dxfRf̄A = L Im�F1 + F2

2
+ F12 cos �� , �49�

which leads to

1

L


−L1

L2

dx�fR f̄A − fA f̄R� = 0. �50�

Thus, the second term in Eq. �47� is also vanishing. We will
see in Sec. V that this term is responsible for the particle-
hole interference contribution to the thermopower that can be
finite in the house interferometer. Finally, the first term in Eq.
�47� gives rise to the only nonvanishing contribution to the
current J0 that is linear with respect to the temperature gra-
dient.

From Eq. �48� we obtain

J0 = −
�d

8e
 d�h� Re

F1 − F2

2
. �51�

Therefore the quasiclassical thermoelectric effect is absent in
the left-right symmetric device F1=F2 in accordance with
Ref. 22 and general symmetry considerations. The ther-
mopower is readily found from the relation S= �J0 /���T2
−T1�−1, where we disregard the corrections to the Drude con-
ductivity � arising from the proximity effect. This approxi-
mation is applicable to the second order in the NS interface
transparency.

In order to calculate J0 in Eq. �51� we substitute � found
from Eq. �44� into Eq. �51�. Disregarding the terms that are
proportional to h�T we obtain the equation on the imbalance
� in the following form:

sin �
d

L
 d�hT Im F12

= d�h� Re�1

2
�F1 + F2� + F12 cos �� . �52�

Expanding this equation to the first order in � and the tem-
perature gradient we obtain
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� = A�T1 − T2�sin � , �53�

where T= �T1+T2� /2 is the mean temperature in the system
and the coefficient A is given by

A =

�d/L� d�� cosh−2 �

2T
Im F12

T d� cosh−2 �

2T
Re�F1 + F2 + 2F12 cos ��

. �54�

We note that the coefficient A is finite even for vanishing
interface transparency parameters 1,2. From Eqs. �51� and
�53� we find the thermopower

S =
Ad sin �

8eT
 d� cosh−2 �

2T
Re�F2 − F1� , �55�

which behaves roughly as sin �. The thermopower is finite
only if there is a difference between F1 and F2, hence the
device asymmetry is required. Equation �55� describes the
analog of the Pethick-Smith effect29 in a superconducting
proximity system.

The imbalance given by Eq. �53� is a nonmonotonous
function of the mean temperature T that reaches its maximal
value at T�Ec=D /L2 and decays as a stretched exponent for
T�Ec�=D /d2. It is worth noting that the imbalance itself is
finite even for a left-right symmetric setup and in the limit of
small transparency of the NS interfaces. The temperature de-
pendence of � is determined by that of the coefficient A in
Eq. �54�. The energy integrals in Eq. �54� can be rewritten as
sums over the Matsubara frequencies. This greatly simplifies
the calculation of the asymptotic behavior of A at large tem-
peratures.

Let us estimate the coefficient A for a symmetric setup
with �1=�2=� and 1=2. In the low temperature limit T
�Ec we obtain

A = c�

TL�

D
, c� =

�2

18

1 − 2��/L�2

1 − �2�/L�2 sin2��/2�
. �56�

For high temperatures T�Ec� we find from the Matsubara
representation of Eq. �54� that

A = c1
d

�
��2�T/Ec� − 1�e−�2�T/Ec�, �57�

where

c1 =
�

�2 − 2−1/2���3/2�

 0.93. �58�

The analysis shows that the coefficient A reaches its maximal
value at T�Ec=D /L2.

For T�Ec� the energy integral in Eq. �55� is decaying as
T−1/2, provided 1�2. This decay crosses over to a
stretched exponential decay for 1=2 if the asymmetry is
caused merely by a difference between �1 and �2. Therefore
an asymmetry in the transparency parameter is of a greater
importance to the thermopower than that in the arm lengths.
For an equal arm interferometer �1=�2=� with 1�2 we
obtain from Eqs. �56� and �57� in the limit T�Ec=D /L2 that

S =
dc��2

2 − 1
2�sin �

4e
�1 +

d

L
�T�2

D
. �59�

For high temperatures, T�Ec�=D /d2, we get

S =
�d�2

2 − 1
2�sin �

8e

d2

L2�1 −� Ec�

2�T
�e−�2�T/Ec�. �60�

The stretched exponential decay of the Pethick-Smith
thermopower29 at high temperatures is entirely due to the
behavior of the imbalance �.

For the interferometer with �1=�2=� it is convenient to
introduce the dimensionless function Y by the following re-
lation:

S =
�d�2

2 − 1
2�sin �

8e
Y� T

Ec
,
d

L
,�� . �61�

We see from Eqs. �78� and �60� that Y is a very smooth
function of the order parameter phase difference �. The de-
pendence on � disappears in the limit T�Ec�. We plot the
temperature dependence of Y in Fig. 4 for �=� /2 and d /L
=1 /4, 1/3, 1/2, 2/3, and 3/4. The thermopower reaches its
maximal value in the interferometer with �1=�2=d=L /3 at
the temperature T�2Ec. Our results are consistent with the
experiment in Ref. 12 and with the numerical analysis in
Refs. 34, 35, and 40. The magnetic flux dependence of the
thermopower is always antisymmetric and is essentially
given by sin 2�	 /	0. A small deviation from this law may
arise at low temperatures T�Ec�. The strength of the
proximity-induced thermoelectric effect in the parallelogram
interferometer is restricted by the asymmetry parameter 1

2

−2
2 and by the maximal value of the dimensionless function

Y that is approximated by Ymax
0.05.

V. THERMOELECTRIC EFFECT IN THE HOUSE
INTERFEROMETER

In this section we apply the same theory to the house
interferometer depicted in Fig. 5. In our description of the
system we introduce two normal-metal wires, N and N�,
which are connected via a single tunnel junction with the
transparency parameter . In the actual experiment in Ref.
12 the junction NN� is ballistic because the metallic wires are
produced in a single lithography circle. We, however, expect
that the symmetry of the thermoelectric coefficient is not
affected by the detailed characteristics of the NN� junction.

Different space variables x and y are introduced as the
coordinates along the wires N and N�, correspondingly. The
proximity effect is described by Green’s functions ǧc�y� in
N� and ǧ�x� in N. The NN� junction is located at x=y=0 and
the wire N� is contacted to the superconductor at y=−d1 and
y=d2. The transparency parameters ̃1 and ̃2 of the N�S
interfaces are introduced in the same way as in Sec. IV.

The thermopower measurements in Ref. 12 are shown in
Fig. 1�b�. In the experiment the distance between the N�S is
given by d=d1+d2�2 �m that is smaller than the phase-
coherence length L��4.6 �m at T=38 mK. We, therefore,
expect that the setup is adequately described by the Usadel
equation.
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The charge conservation condition in the loop formed by
the superconductor and the N� wire is expressed as

��je	0 = 0. �62�

Thus, there exists no Pethick-Smith-type contribution29 to J0
that is analogous to the first term in Eq. �47�. In other words
the mechanism of the superconductor charging due to a su-
percurrent flow is absent in the house interferometer. Unlike
in the parallelogram interferometer, the other two contribu-
tions to J0 in Eq. �47� survive,

J0 =
�

8e
 d�� hT

2L

1

L


−L1

L2

dxY −
h�T

2L

1

L


−L1

L2

dxM+� .

�63�

It is worth noting that expression �63� for the dissipative
current between the temperature reservoirs is valid for any
interface transparency.

The first term of Eq. �63�, which is proportional to hT, is
antisymmetric in the magnetic field and is further referred to
as the interference contribution. This contribution is insensi-
tive to the imbalance and vanishes in the parallelogram in-
terferometer because of property �50�. It remains, however,
finite in the house interferometer where the length of the
interfering trajectories is fixed by the distances d1 and d2
between the N�S interfaces and the NN� junction.

Two interfering quasiparticle trajectories, which contrib-
ute to the heat transfer between the reservoirs, are depicted
schematically in Fig. 6. The scattering amplitude of the pro-
cess can be written as

A� � 2�̃1ei�ke−kh�d1+i�1 + ̃2ei�ke−kh�d2+i�2�2, �64�

where ke,h=kF�� /vF are the wave vectors of electrons and
holes. Here we took into account that the Andreev reflection
process is of a second order in the N�S interface transpar-
ency. The corresponding contribution to the thermopower is
proportional to the energy derivative of the scattering ampli-
tude A� at the Fermi energy,

S � � dA�

d�
�

�=0
� 2̃1̃2�d2 − d1�sin � , �65�

which is a manifestly antisymmetric function of the magnetic
flux. The result of Eq. �65� is finite if d1�d2, while the
difference in the transmission parameters ̃1 and ̃2 is neither
necessary nor sufficient for the observation of the interfer-
ence effect. Integration over all possible trajectories in the
parallelogram interferometer leads to the complete suppres-
sion of interference that is reflected in Eq. �50�.

The interference contribution to the thermopower dis-
cussed above has not been observed in experiment because it
is overwhelmed by the second term in Eq. �63� which we
refer to as the symmetric contribution. This term is propor-
tional to h�T and symmetric with respect to the magnetic flux
provided � is flux independent. It remains to be finite for a
left-right symmetric device but vanishes for �=0.

The experimental measurements in Ref. 12 shown in Fig.
1�b� can be regarded as demonstration of a finite imbalance
state formed in the house interferometer. The experiment

suggests that a constant imbalance � is largely independent
of the temperature gradient in the wire N as well as on the
supercurrent in the loop. Since �=0 is the only solution to
the charge conservation condition �Eq. �62�	, the origin of
such a steady state is not entirely clear. We stress, however,
that a tiny charge imbalance can originate in the usual ther-
moelectric effect provided N� wire is in an equilibrium state
with a temperature T� that is smaller than both T1 and T2 due
to the phonon cooling. In this case we can estimate �=e�T
−T��SN�, where SN� is the small thermopower of the N� wire.
The tiny charge imbalance � will be seen to have a great
effect on the thermopower due the proximity effect enhance-
ment factor. In what follows we simply keep � as a phenom-
enological parameter of the quasiclassical theory.

We start by calculating the anomalous component fR�x� of
Green’s function in the normal-metal wire N. We again take
advantage of the linearized Usadel equation �Eq. �25�	 and
employ the rigid boundary condition

��dfR

dx
�

0
= − fc0

R , �66�

where fc0
R = fc

R�y=0� is the value of anomalous Green’s func-
tion at the junction.

In addition to Eq. �66� we use Eq. �35� and the continuity
of fR�x� at x=0. As the result we obtain

fR =
fc0

R

z sinh zL
�sinh zL2 sinh z�L1 + x� , − L1 � x � 0

sinh zL1 sinh z�L2 − x� , 0 � x � L2.
�
�67�

We calculate the spatial integrals in Eq. �63� with the help of
Eq. �67� as

1

L


−L1

L2

dx�fR f̄A � fA f̄R� =
D

2�
�fc0

R f̄c0
A � fc0

A f̄c0
R �Im F ,

F = 2sinh zL1 sinh zL2

zL sinh zL
, L = L1 + L2. �68�

It is worth noting that the first term of Eq. �63� is not neces-
sarily vanishing unlike in the parallelogram interferometer.

We evaluate the second term of Eq. �63� to the leading
order in the N�S interface transparency by calculating the
following integral:

1

L


−L1

L2

dx�fR f̄R + fA f̄A� =
D

2�
Im fc0

R f̄c0
R �K − F� ,

K = 2L1 sinh2 zL2 + L2 sinh2 zL1

L sinh2 zL
, �69�

which is also expressed through anomalous Green’s function
in the N� wire. Thus, from Eq. �63� we find, to the second
order in fc0, that
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J0 =
�

8e
 d�

D

2�
� hT

2L
�fc0

R f̄c0
A − fc0

A f̄c0
R �Im F −

h�T

2L
��fc0

R f̄c0
A

+ fc0
A f̄c0

R �Im F + Im fc0
R f̄c0

R �F − K��� . �70�

It remains to determine the function fc�y� from the Usadel
equation in the wire N�. Since we calculate the current J0 to
the leading order in the interface transparency parameters the
tunneling between N and N� can be disregarded in the Usadel
equation. Taking advantage of the rigid boundary conditions
in the form

�dfc
R

dy
�

−d1

= − ̃1ei�1, �dfc
R

dy
�

d2

= ̃2ei�2, �71�

we obtain

fc
R�y� = ̃1ei�1

cosh z�d2 − y�
z sinh zd

+ ̃2ei�2
cosh z�d1 + y�

z sinh zd
,

�72�

where d=d1+d2. Thus, the value of anomalous Green’s func-
tion at the contact is given by

fc0
R = ̃1ei�1

cosh zd2

z sinh zd
+ ̃2ei�2

cosh zd1

z sinh zd
. �73�

Substitution of Eq. �73� to Eq. �70� completes the calculation
of the thermoelectric effect.

Let us now analyze two different terms in Eq. �70� sepa-
rately. We first let �=0 so that h�T=0 and the only contri-
bution to Eq. �70� is antisymmetric in the magnetic flux.
From Eq. �73� we find the expression

fc0
R f̄c0

A − fc0
A f̄c0

R = 4̃1̃2 sin �
Im�cosh zd1 cosh z�d2�

�z sinh zd�2
.

�74�

In order to obtain the thermopower S= �J0 /���T2−T1�−1 we
substitute Eq. �74� to Eq. �70� and expand hT to the linear
order in the temperature gradient as

hT = −
��T1 − T2�

T2 cosh2 �

2T

. �75�

The resulting expression for S reads

S =
2̃1̃2 sin �Dd2

8eL

B

T
�76�

with the coefficient B given by

B = d�
Im�cosh zd1 cosh z�d2�

�zd sinh zd�2T cosh2 �

2T

Im
tanh�zL/2�
zL sinh zL

, �77�

where we let L1=L2=L /2 for simplicity. Equation �76� de-
scribes the interference contribution to the thermopower. The
result of Eq. �76� is indeed proportional to 2̃1̃2 sin � and
is vanishing for d1=d2 in accordance with the estimate �Eq.

�65�	. Moreover, in the limit T�min�Ec ,Ec��, where Ec
=D /L2 and Ec�=D /d2, we find

S =
2̃1̃2�d2 − d1�DL

198eTd
sin � , �78�

which is equivalent to Eq. �65�. We note that the divergence
of Eq. �78� in the limit T→0 is regularized by the high order
processes in the parameter . The result of Eq. �78� is, there-
fore, valid only for T�2D. More accurate expression can
be obtained by solving the nonlinear Usadel equation in the
normal-metal wire N�.

For higher temperatures T�max�Ec ,Ec�� it is legitimate to
substitute cosh�� /2T�→1 in Eq. �77�. The remaining inte-
gral gives the dependence of the thermopower on the dis-
tances L, d1, and d2. Thus, unlike the Pethick-Smith
contribution29 �Eq. �61�	 to the thermopower, the interference
contribution has a monotonous temperature dependence and
decays as the power law T−2 at high temperatures. It is also
the only contribution that remains finite for �=0.

Let us consider now the symmetric contribution to Eq.
�70� that emerges for a finite �. Since this contribution does
not rely on the device asymmetry, we let for simplicity d1
=d2=d /2. Following the discussion above we treat the im-
balance � as a constant in our quasiclassical analysis and
calculate the thermopower with the assumption that � is in-
dependent of the temperature gradient T2−T1. The substitu-
tion of Eq. �73� to Eq. �70� gives

J0 = −
�

4e

D�̃1
2 + ̃2

2 + 2̃1̃2 cos ��
TL

 d�h�TP , �79�

where

P =
T

16�
Im� F

�z sinh zd/2�2
+

F − K

2�z sinh zd/2�2� . �80�

Thus, for the completely symmetric case ̃1= ̃2 the ther-
mopower has an overall phase dependent factor 1+cos �,
which qualitatively agrees with the experimental curve
shown in Fig. 1�b�. In general, the minimal absolute value of
the symmetric contribution to the thermopower is determined
by the asymmetry parameter �̃1−2�2.

We note, however, that the integral in Eq. �80� diverges at
small energies. This divergence is regularized by the high
order processes in the parameter . In order to get a well-
defined expression we need to solve the nonlinear Usadel
equation in N� that is a daunting task. We give instead an
analytical estimate to the symmetric thermopower by replac-
ing the N� wire with a diffusive quantum dot. In this model
Green’s function, ǧc, in the dot can be obtained in the spirit
of Nazarov’s circuit theory41 from the matrix current conser-
vation condition,

�̃1ĝS,1
R + ̃1ĝS,2

R + �z,gc
R	 = 0. �81�

Resolving the condition for ĝc
R we obtain

fc
R = �̃1ei�1 + ̃2ei�2�u−1, �82�

with
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u = ��̃1 + ̃2��− i�/�� + �1 + �− i�/��2�2 + ̃1
2 + ̃2

2

+ 2̃1̃2 cos � . �83�

In this approximation anomalous Green’s function fc
R= fc0

R

acquires no spatial dependence on y. The function fc
R remains

to be small in the parameters ̃1 and ̃2; therefore Eq. �70� is
still a legitimate approximation for the thermopower to the
leading order in ̃1,2. Substituting fc0

R = fc
R from Eq. �82� to

Eq. �70� we arrive at the result �Eq. �79�	 with

P =
T

�
Im� F

�u�
+

F − K

2u
� . �84�

In order to be consistent we have to take the limit ��� and
̃a� in expression �83�, hence

u = 2, �85�

and the parameter  cancels out completely in Eq. �84�. In
the limit ��T and T1−T2�T we expand h�T as

h�T �
��T1 − T2�

T2 cosh2 �/2T
�1 −

�

T
tanh

�

2T
� �86�

and substitute this expression into Eq. �79� with the function
P given by Eq. �84�. This provides us with the final result for
the thermopower S= �J0 /���T2−T1�−1 of the house interfer-
ometer,

S = −
D��̃1

2 + ̃2
2 + 2̃1̃2 cos ��
4eT2L

Ỹ� T

Ec
� , �87�

where Ec=D /L2 and the dimensionless function Ỹ�T /Ec� is
given by

Ỹ = 
−�

�

dx
2x tanh x − 1

4x cosh2 x
Im�3 tanh �x

2�x
−

1

cosh2 �x
� ,

�88�

with �x��−ixT /Ec. In the limit T�Ec we find Ỹ�T /Ec�
= �187�2 /7560��T /Ec�3. The function Ỹ determines the tem-
perature dependence of the symmetric contribution to the
thermopower �see Fig. 7� provided � is a temperature inde-
pendent constant. This contribution is not suppressed by any
asymmetry factor unlike the Pethick-Smith thermopower29

�Eq. �61�	 and the interference contribution �Eq. �76�	. More-
over, the symmetric contribution is neither monotonous nor
sign-definite function of temperature. At T�Ec the ther-
mopower approaches its maximum value, which can be esti-
mated as

S�T�Ec

 − 0.1

�L3

4eD
�̃1

2 + ̃2
2 + 2̃1̃2 cos �� . �89�

Thus, the presence of a very small imbalance � leads to large
observable magnetic flux dependence of the thermopower.
The absolute value of the thermopower at T�Ec and 	=0 is
determined by the parameter �L / ��BEc�, where �B is the
effective barrier length that is orders of magnitude smaller
than L. This is the proximity effect enhancement factor that
gives rise to an anomalously strong sensitivity of the ther-
mopower to the charge imbalance �.

We also see from Eqs. �87� and �88� that the thermopower
changes sign at T
24Ec and decays as T−2 at higher tem-

peratures since Ỹ →−2 /5 for T�24Ec. For higher tempera-
tures the length L has to be substituted by the phase-
coherence length L� provided the latter is smaller than the
distance between the reservoirs. The temperature dependence
of L� complicates the direct comparison to the experimental
data. In particular this dependence should strongly enhance
the reversed thermopower for T�24Ec. Nevertheless, the
sign reversal behavior of the symmetric thermopower ob-
served by Parsons et al.16,17 is in a qualitative agreement with
the result of Eq. �87�.

A thorough experimental test of the presented theory can
be performed with the help of an independent experimental
control over the imbalance � that has a strong effect on the
sign and the magnitude of the symmetric contribution to the
thermopower in the house interferometer. For the parallelo-
gram interferometer the symmetric contribution is described
by the last term in Eq. �47�, which is of the second order in
the temperature gradient. This term can be roughly estimated
by substituting � from Eq. �53� to Eq. �87�. This second-
order effect reverses sign with increasing temperature and is
antisymmetric in 	 due to the magnetic flux dependence of
the imbalance in the parallelogram interferometer. It is likely
that the effect of this type has been observed in the experi-
ments by Parsons et al.16,17

VI. CONCLUSION

In this paper we applied quasiclassical theory to study the
origin of the thermoelectric effects in Andreev interferom-
eters. The theory predicts three additive contributions to the
electric current expressed by Eqs. �11a� and �14a� in the pres-
ence of the superconducting proximity effect. Depending on
the geometry of Andreev interferometer and its parameters
any of these contributions may dominate the quasiclassical
thermoelectric response of the normal-metal wire. One can
classify the observed thermoelectric effect by its dependence
on the temperature and the magnetic flux piercing the inter-
ferometer. The last term in Eq. �14a�, which describes the
proximity-induced supercurrent, and the second term, which
is related to the interference contribution, are antisymmetric
in the magnetic flux. Even though the supercurrent cannot
flow between the normal-metal reservoirs the last term in Eq.
�14a� can, nevertheless, contribute to the thermopower by
means of the proximity-induced Pethick-Smith effect.29 This
effect takes place provided that the temperature gradient is
aligned in a part of the normal-metal wire with the supercur-
rent. This situation is realized in the parallelogram interfer-
ometer considered in the Sec. IV.

The left-right asymmetry of the parallelogram interferom-
eter is responsible for a difference in the dissipative charging
currents flowing from the normal-metal reservoirs to the su-
perconductor. As the result of this asymmetry a compensat-
ing dissipative current J0 �Eq. �51�	 is flowing between the
normal-metal reservoirs. The analytical expression for the
thermopower in the case of weak proximity effect is given by
Eqs. �54� and �55�. The proximity-induced Pethick-Smith29

effect demonstrates a nonmonotonous temperature depen-
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dence with a maximum at T�2Ec �see Fig. 4� and is char-
acterized by the stretched exponential decay for high tem-
peratures �Eq. �60�	. The effect does not rely on the
quasiparticle phase coherence in the normal-metal wire. The
most important ingredient of the theory is the difference in
the electron distribution function near the first and the second
NS interfaces in the parallelogram interferometer.

In contrast, the interference contribution to the ther-
mopower, which is given by the second term in Eq. �14a�,
does require a phase coherence in the normal-metal wire.
This contribution is the only one that exists in the absence of
a charge imbalance between the superconductor and the nor-
mal metal. This effect cannot be seen in the parallelogram
interferometer but might be observed in the house one pro-
vided d1�d2 in Fig. 5. The interference contribution is char-
acterized by a monotonous temperature decay, which is esti-
mated in Eqs. �76� and �77� in the Sec. V.

Finally, the first term in Eq. �14a� is regarded as the sym-
metric contribution. It is largely insensitive to the left-right
symmetry of the device and gives rise to the thermopower

that is symmetric with respect to the magnetic flux �with the
assumption that � is flux independent�. In Sec. V we argue
that the existing experiments indicate the presence of such a
steady state imbalance in the house interferometer. The sym-
metric contribution is characterized by a peculiar tempera-
ture dependence in Eqs. �87� and �88� that is neither monoto-
nous nor sign definite. This contribution strongly affects the
thermoelectric response of the parallelogram interferometer
in the second order with respect to the temperature gradient.
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